
Machine Learning Cheat Sheet

Cameron Taylor∗

November 14, 2019

Introduction

This cheat sheet introduces the basics of machine learning and how it relates to traditional econo-
metrics. It is accessible with an intermediate background in statistics and econometrics. It is meant
to show people that machine learning does not have to be hard and mysterious! Descriptions are
favored over illustrations though in future iterations examples and illustrations could be added.

Concepts

Machine learning methods are statistical methods, and if you are familiar with statistical methods
quite well then much of machine learning is not mysterious. The major concept necessary to
machine learning methods that is not involved in traditional statistical or econometric methods is
the idea of tuning and cross-validation. In machine learning methods, it is often the case that there
is some parameter λ such that the objective function (of the data and parameters) being minimized
to estimate the parameters is also a function of λ. Thus, one needs to select λ before estimating the
parameters. This is usually done by cross-validation, explained below.

Method Details

Cross-Validation

I cover the most popular form of cross-validation: K-fold cross validation. This works as an input
into finding λ that will be used in estimation. Split the data randomly into K roughly equally sized

∗Stanford Graduate School of Business. Email: cntaylor@stanford.edu

1

mailto:cntaylor@stanford.edu

bins Bk. For each k = 1, . . . , K and each value of the tuning parameter λm over a grid considered,
compute the validation error

Ek(λ) =
∑
i∈Bk

(yi − f̂−kλ (xi))
2 (1)

where f̂−kλ (xi) is the estimate at tuning parameter λ leaving out data in Bk.
Then the total CV objective function is

CV (λ) =
1

N

K∑
k=1

Ek(λ) (2)

and minimizing this is how we choose λ. When K = N this is called leave-one-out cross valida-
tion. In practice most people choose K around 10 for computational reasons.

Supervised Learning and Regression

These are problems concerning estimating E[Y |X].

• OLS: Standard, many tools and resources for this.

• LASSO: Start from OLS but think about penalizing the number of coefficients that are larger
than 0. The estimator is

β̂lasso = argminβ

{
1

2

N∑
i=1

(yi −Xiβ) + λ

p∑
j=1

|βj|

}
(3)

where p is the total number of variables not a constant. This is the L1 penalty.

λ is chosen by cross-validation: usually 10-fold cross validation is preferred.

• Ridge: Start from OLS but again think about penalizing the number of coefficients larger
than 0. The estimator is

β̂ridge = argminβ

{
1

2

N∑
i=1

(yi −Xiβ) + λ

p∑
j=1

β2
j

}
(4)

where p is the total number of variables not a constant. This is the L2 penalty.

• LASSO vs. Ridge: The difference is hard vs. soft thresholding (Statistical Learning Book

2

Figure 3.11, Table 3.4). Suppose that the columns of X are orthonormal. Then

β̂j,lasso = sign(β̂j,ols)(|β̂j,ols| − λ)+

β̂j,ridge = β̂j,ols/(1 + λ)

As well computational trade-offs: ridge has closed form solution, lasso more computation-
ally intensive. LASSO more popular for feature selection when you think the underlying data
generating process or structural model is sparse and you have a large number of variables.

• Elastic Net: Combine LASSO and Ridge to get

β̂elastic net = argminβ

{
1

2

N∑
i=1

(yi −Xiβ) + λ
(
α

p∑
j=1

|βj|+ (1− α)

p∑
j=1

β2
j

)}
(5)

where α is usually chosen without CV (pre-specified), although can be maximized over
jointly for two-dimensional surface CV. This is useful because when p is large compared
to N it overcomes the problem that LASSO has of selecting at most N covariates for the
model.

• Kernel-Based Regression:

Kernel Regression fits the regression function as

f̂kernel(x) =

∑
iK(x−Xi

h
)yi∑

iK(x−Xi

h
)

(6)

where h is the bandwidth chosen by cross-validation and K(·) is a kernel function which
satisfies a few properties. To fix ideas, think of this as a standard normal density. Note that
this fits constants weighted by the kernel around yi.

Local-Linear/Polynomial Regression generalizes kernel regression by estimating

f̂local(x) = min
β0,β1

∑
i

K(
x−Xi

h
)(yi − β0 − β1(x−Xi))

2 (7)

There is a closed form solution for the local linear function. Local polynomial generalizes
to higher order polynomials of (x−Xi).

• Basis Functions and Splines: A general basis expansion is to pick M and then write

f(X) =
M∑
m=1

βmhm(X)

3

where hm : Rp → R are transformations.

When we choose the hm in a specific way we call it splines. In particular, splines have knots

at a vector of points in the feature space ξ that allow us to interpolate continuously between
the different regions defined by the knots. A common spline choice is the natural cubic
spline which with K knots which has basis functions:

N1(X) = 1, N2(X) = X,Nk+2(X) = dk(X)− dK−1(X)

where dk(X) =
(X−ξk)3+−(X−ξK)3+

ξK−ξk
. The natural cubic spline is nice because it mitigates

boundary bias (bias at the boundaries of the feature space or X’s) by forcing the estimated
function to be linear beyond the boundary knots.

Note that these procedures have many tuning parameters: degree of splines, number of knots
and where to place the knots. Multivariate Adaptive Regression Splines get over this problem
by greedily selecting the knots in a fashion similar to regression trees.

• Additive Models: The generalized additive model is given by

f̂additive(X) =

p∑
j=1

fj(Xj) (8)

and we aim to minimize the sum of squared errors. This model can be fit with the backfitting

algorithm which consists of iteratively applying a smoother (e.g. kernel regression, local
linear, etc.) to each dimension j and updating. Thus we do, in some senses, parameterize
this model by picking smoothers to estimate each separate fj .

• Regression Tree: Regression trees consist of splitting the feature space into regions that pre-
dict a constant for the dependent variable in each region. Thus the regression tree adaptively
selects both the variable/feature j and a split point in that variable s to minimize the sum of
squared errors, predicting at the mean in each region. Cross validation is done on the number
of splits J we allow.

Pruning: To make sure to pick up important relationships, it is often helpful to grow a “big”
tree first and then prune the tree by removing splits to optimize.

Bump Hunting/PRIM: For classification, can adapt regression tree like methods to find
modes/maximums of the dependent variable in the feature space.

• Random Forest: Random forests add smoothness to regression trees by introducing ran-
domness in two ways. Consider applying a regression tree multiple times on bootstrapped

4

samples of the data and where, at each step, we consider only a random subset of the inde-
pendent variables to split on. Then the resulting random forest estimate is the average over
these bootstrapped regression trees.

• Boosting: The general idea behind boosting is to apply a simple, even naive method, iter-
atively to improve the fit. The method is iteratively applied to residuals from the previous
methods. At its most basic level boosting fits an additive model. The number of times
boosted M is a tuning parameter here. In particular, at any iteration m the following is fitted

min
γm

∑
i

L(yi, Ĝm−1(Xi) + g(Xi; γm)) (9)

where L is the loss function, Ĝ0(x) ≡ 0 and g(·) is the single method for each boosting
step (e.g. single split tree). One can weight the resulting gm by εm in the overall additive
prediction. Tuning usually involves: number of boosts/iterations to apply, some CV on the
simple method (ex: how many splits in the tree), and the learning rate εm.

AdaBoost: A particular popular example of a boosting algorithm for classification. This fits a
classification method and then weights each classification (in overall additive method) based
on the computed error of the iterative step. It uses exponential loss. Many different loss
functions can be considered for boosting. The difference between AdaBoost and Gradient
Boosting is that in AdaBoost a single weak learner is applied sequentially where the only
thing that varies among iterates is the weighting of the different data points for prediction
based on previous error. The final prediction function is a weighted sum of all the weak
learners (like Gradient boosting). The weights are varied to adapt to “more difficult cases”.

• Neural Nets: Neural nets are large parametric models. They consist of hidden layers and
nodes in each layer. There is also an input layer and an output layer. Each node is a linear
function of terms that are non-linear transformations of nodes inn the previous layer. So, if,
for example, g(·) is linear, then it is just a very large linear model with many interactions. No
asymptotic theory exists and value is in ability to estimate with thousands of parameters. To
estimate, regularize the linear parameters for each node, and pick the regularization penalty
through CV.

Supervised Learning and Classification

These are problems concerning estimating P (Y |X) or alternatively classifying Y into buckets
given X .

5

• Logistic Regression: Standard, many tools and resources for this. An elegant way to perform
estimation is through iteratively weighted least squares - each step solves a different least
squares problem. Like linear regression we can add regularization to logistic regression with
a regularization parameter λ.

• Regression Tree for Classification: When doing classification, we change the loss function.
In particular, look at the impurity of leaves in the tree, which measures how varied the
classifications/predictions are in a leaf. Then the loss function for classification is a weighted
average over the impurities of each leave. Two standard impurity measures are Gini Impurity
and Information Criterion.

• Neural Network for Classification: Same but the output layer is M dimensional for each
class, then run a logit on the output layer to get a classification prediction.

• Linear Discriminant Analysis: Suppose each class k has conditional density of X given in
class k of fk(x) and prior probabilities then we can write

P (Y = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

Then LDA models each class density as a multivariate Gaussian density with a common
covariance matrix. Then the linear discriminant functions are

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk (10)

and then we classify based on the largest δk for each x. We use the training data to estimate
πk, µk and Σ. These estimators come from the analogy principle. This estimator is closely
related to linear regression.

We can generalize LDA to QDA by assuming that classes have different covariance matrices.
Then the decision boundaries between classes are defined by quadratic equations. Note that
the number of parameters to estimate can increase by a lot. One way to approximate QDA
is to add dimensions to the LDA with quadratics.

• Support Vector Machines: Consider the case of binary classification yi ∈ {−1, 1}. A hyper-
plane is defined by

{x : x′β + β0 = 0}

A SVM classifier classifies based on what sign/side of the hyperplane the x’s put it on.

In some cases we may be able to perfectly separate the classification space. If we can do that

6

then we pick the hyperplane that “puts biggest distance between the classes”. This is useful
for out-of-sample predictions and generalizing the model.

The method is called support vectors because the parameter estimates forming the hyper-
plane depend on only a few points (vectors) that are pivotal for forming the hyperplane. In
particular β̂ =

∑
i∈S α̂ixi where S is the set of support vectors.

In general, we can write the problem as

min
α

N∑
i=1

[
1− yi

(
α0 +

N∑
j=1

αjx
T
j xi

)]
+

+ λ
∑
i,j

αix
T
i xjαj (11)

where λ is a regularization parameter and a+ = 1{a > 0} · a.

We can make the classifier more flexible by replacing xTj xi in the estimation problem with
kernel functions K(xj, xi) to allow for non-linear interactions.

Unsupervised Learning

These are problems concerning grouping X’s with no dependent variable.

• Principal Components: Provides sequence of best linear approximations to the data by essen-
tially fitting a q dimensional hyperplane to explain the variance in X . A modern alternative
for non-negative data is matrix factorization.

• k means clustering: Goal is to categorize each data point xi into one of K clusters C(i) ∈
{1, . . . , K}. Suppose that the X’s are quantitative. Define the dissimilarity measure be-
tween two points xi and xj as

d(xi, xj) = ||xi − xj||2

Then to estimate consider the within cluster scatter for a certain dissimilarity measure

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(j)=k

d(xi, dj)

In this case this simplifies nicely and has a nice zig-zag algorithm to optimize where we pick
the means of clusters and then categorize points, iterating the process. We can generalize
d(·, ·) to avoid issues with outliers and large quantitative values - the estimation algorithm
still works well. Note that we cannot do CV on K here, we must choose it. One way

7

to choose it is to plot log(WK) as a function of K and look for a “gap”. We can also do
hierarchical clustering to avoid having to pick K altogether.

• Multidimensional Scaling: Given data or even a dissimilarity index, look for low represen-
tation representation of the data z = (z1, . . . , zn) by minimizing stress function

SM(z) =
∑
i 6=j

(dij − ||zi − zj||)2

with alternatives. The idea is that the low representation will still preserve the distances
between the points. Has recently been expanded to non-linear setup.

• Google PageRank: Consider pages that link to each other. Let Lij = 1 if page j links to
page i. Let cj =

∑
i Lij be total links. Then page rank is defined recursively by

pi = (1− d) + d
N∑
j=1

Lij
cj
pj (12)

where the idea is that a page is important if important pages link to it. In matrix form this
can be written as

p = (1− d)e+ dLD−1c p = [(1− d)eeT/N + dLD−1c]p = Ap

where the second equality uses a normalization the average page rank to be 1. Then A has
largest real eigenvalue 1 so we can use the power method to find the fixed point. The reason
this works is that it forms an irreducible aperiodic Markov chain.

• Generative Adversarial Networks: Suppose that we have real observations with empirical
distribution F̂X(·) in X. Then consider some noise distribution FZ(·) (e.g. multivariate
normal) in Z. We require a generator gθ : Z→ X. For example, this can be a neural network
or another flexible model. Finally we require a discriminator/critic to tell fake and real data
apart, this can also be a neural network or other flexible classifier. Then the goal of GAN is
to find a θ so that gθ(Z) ∼ F̂X according to the discriminator/critic.

We can generally write this as a min-max problem where the inner maximum problem is
for fitting the classifier and the outer minimization is to minimize the optimization criteria so
that the generator makes it very difficult to distinguish between the data generating processes.
Then we can estimate by updating the classifier and then using gradient descent to update
the GAN.

In general, often simplify the critic/discriminator step to some measure between probability

8

distributions. Common ones are KL, Jensen-Shannon and Wasserstein which has received
the most attention probably. Wasserstein has the form (ignoring a Lipschitz constraint)

min
θ

max
φ

[
1

NF

∑
i:Yi=F

f(gθ(Zi), φ)− 1

NR

∑
i:Yi=R

f(Xi, φ)

]
(13)

where NF is the number of fake/artificial obs and NR is the number of real obs. Here f is
still the classifier with parameter φ to be estimated.

9

