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Introduction

These are section/discussion session notes for MGTECON 603. In each section I go over a few
problems related to the lecture notes for about an hour and leave the rest of time for questions.
Some of the exercises are taken from previous section notes which had contributions from Breno
Vieira and Evgeni Drynkin.

Section 1 - Probability Spaces, Random Variables, and Transfor-
mations of Random Variables

1. (Sigma Algebra) ConsiderX = {1, 2, 3, 4}. What is the smallest sigma algebra that contains
{1}? What is the smallest sigma algebra that contains {1} and {2, 3}?

Solution: In any sigma algebra we must have empty set and X so always put those in. Now
consider {1}. Sigma algebras must be closed under unions and complements. Taking a
union of {1} with anything else considered is already in there so we are fine. How about the
complement? The complement is {2, 3, 4} so this must be in this sigma algebra. Do we need
anything else? If we take complements and unions of all the elements ∅, {1}, {2, 3, 4}, X we
see that everything is closed, so this is the smallest!

Now consider the same procedure for when adding in {2, 3}. First the complement {1, 4}
must be in there. The union {1, 2, 3} must also be in there. The complement of this set {4}
must be in there. Then we must also add {2, 3, 4}. Anything else? Nope we are good!

2. (Independence) Suppose that fX,Y (x, y) = 1{(x, y) ∈ S} for some S ⊆ R2 that is closed
and convex. First, what does this tell us about the area of S? Second, does this imply that X
and Y are independent?
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Solution: The formal way to do this is to look at whether the joint density can be represented
as a product of marginals - like independence in probability. The intuitive way to answer this
question is to draw pictures. Suppose that S is the unit-square. Then if we were to compute
probabilities can show independence. However, what if we deviate from the unit-square?
In particular, consider the example where S is the disc of radius 1/

√
π centered at 0. Then

to find the marginals, one needs to integrate out the joint distribution. We will go over this
more in Lecture 5.

S is formally defined as

S =
{

(x, y) ∈ R2 : x2 + y2 ≤ 1

π

}
.

Suppose that the joint distribution of X and Y admits a uniform distribution on S. Then to
find the marginal densities we “integrate” out the other variable. In particular, for X we get
that

fX(x) =

∫
y∈R

fX,Y (x, y)dy

=

∫
{y : x2+y2≤ 1

π
}

1dy

=

∫
y∈
[
−
√

1
π
−x2,
√

1
π
−x2
] dy

= 2

√
1

π
− x2

and so, we have that the marginal density of X is

fX(x) = 2

√
1

π
− x2, x ∈ [− 1√

π
,

1√
π

].

By symmetry, the marginal pdf of Y is the symmetric/the same.

Now note that

fX(x)fY (y) = 4

√
1

π
− x2

√
1

π
− y2, x, y ∈ [− 1√

π
,

1√
π

]

which is NOT the same as the original joint density, and so they are not independent.

3. (CDFs) Show that the CDF is right continuous. Why can’t we prove that it is left continuous?
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Solution: Right continuous means that a limit approaching “from the right” passes through.
To do this we will utilize the fact that probability functions are “continuous” in sets. Just
assume this is true (look up proving continuity of probability measure if you’re interested).

To figure this out recall that FX is a function. What is FX(x)? It is P (X ≤ x) =

P ((−∞, x]). So how do we get a limit from the right. In this case, consider the sequence of
sets

An = (−∞, x+ 1/n]

Then x ∈ An for all n. Thus limnAn = (−∞, x] := A. Then we can take the limit from the
right as:

lim
u↓x

FX(u) = lim
n
P (An)

= P (lim
n
An)

= P ((−∞, x])

= FX(x)

using continuity of the probability function.

So why doesn’t this work for left-continuous? Consider trying something similar. Let Bn =

(−∞, x− 1/n]. Then limBn = (−∞, x) and so doing the same argument we get

lim
u↑x

FX(u) = lim
n
P (Bn)

= P (lim
n
Bn)

= P ((−∞, x))

= FX(x) + P (X = x)

and if there is a “mass point” or mass at x, then these will differ and we will have a discon-
tinuity.

4. (Integration and Differentiation) Leibniz rule and differentiating under an integral in general
is a powerful tool. When does Leibniz rule and passing an a derivative through an integral
fail?

Solution: In full mathematical generality, we cannot pass a derivative through an integral.
The reason is that we cannot pass a limit through an integral. For our purposes, the only real
challenge is when we look at improper integrals, integrating over the whole real numbers.
In general if we integrate over a finite range, as long as that finite range is well behaved
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and everything is smooth and differentiable we won’t have problems. What goes wrong
integrating over the whole real line?

Consider f(x, θ). Then∫
∂f(x, θ)

∂θ
dx =

∫
lim
h→0

f(x, θ + h)− f(x, θ)

h
dx

while
∂

∂θ

∫
f(x, θ)dx = lim

h→0

∫
f(x, θ + h)− f(x, θ)

h
dx

Thus everything comes down to passing limits through integrals.

Consider the following sequence of functions:

fn(x) =
1

2n
1{x ∈ [−n, n]}

defined over the real numbers. Let’s draw this.

Then, if we integrate over this for any n, we have that the solution is 1 since the area is 2n.
However, fn(x) converges to the function 0 on the real line (in fact it converges uniformly!)
but then the integral of this limit is 0!

The issue in this specific example is that the support or area that we integrate over (the real
numbers) is unbounded. If we only consider finite integrals, then this would work.

There is another general issue: the convergence needs to be fast enough. In general, one
needs uniform convergence rather than pointwise convergence.

So how do we get around these issues? In general, one of the main tools we use is Lebesgue

Dominated Convergence Theorem: essentially if we can find a function to bound the function
of interest over the whole real line that is integrable, then we are good to go. In this way, we
don’t need to worry about integrating over the whole real line. See Theorem 2.4.2 in Casella
and Berger.

In the differentiation case this amounts to finding a bound for the derivative (the thing we
are integrating).

See Example 2.4.5 in Casella and Berger for more details and some practice.

5. (Integration by Parts) Integration by parts is a classic integration technique/strategy.

The formula for integration by parts is∫ b

a

u(x)v′(x)dx = [u(x)v(x)]ba −
∫ b

a

u′(x)v(x)dx
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We will do two examples

(a) Use IBP to integrate
∫ e

1
log(x)dx

Solution: Let u(x) = log(x) and v′(x) = 1. Then u′(x) = 1/x and v(x) = x. So∫ e

1

log(x)dx = [log(x)x]e1 −
∫ e

1

x

x
dx = log(e)e− log(1)1− (e− 1) = 1

(b) Use IBP to integrate
∫∞

0
λxe−λxdx

Solution: Let u(x) = x and v′(x) = λe−λx. Then v(x) = −e−λx. So∫ ∞
0

λxe−λxdx = [−xe−λx]∞0 +

∫ ∞
0

e−λxdx

= 0− 0 + [−e
−λx

λ
]∞0

=
1

λ

using the fact that xe−λx converges to 0 (can use L’Hopitals Rule!).

Section 2 - Expected Value, Transformations, MGFs, and Stan-
dard Distributions

1. (Transformation of Random Variable) When the transformation is monotone, we can use
the tools that we learned in lecture to derive the pdf directly. Just make sure to be careful
with the support and ensuring monotonicity! I will now show ways to derive transformations
without using the general formula. This involves manipulating the CDF.

(a) Let X be a uniform random variable on [−1, 1]. Let Y = X2. Find the pdf of Y .

Solution: Note that g(X) = X2 is not monotonic on the support. So we need a different
method.

Clearly the support of Y will be [0, 1]. The CDF of X is FX(x) = x+1
2

. Consider the

5



CDF of Y . Let y ∈ [0, 1] be in the support. Then the CDF is

FY (y) = P (Y ≤ y)

= P
(
X2 ≤ y

)
= P (X ∈ [−√y,√y])

= P (X ≤ √y)− P (X ≤ −√y)

=

√
y + 1

2
−
−√y + 1

2

=
√
y

Thus the CDF is FY (y) =
√
y for y ∈ [0, 1] and so, since the random variable is

continuous, the PDF can be found by differentiating giving

fY (y) =
1

2
√
y
, y ∈ [0, 1]

(b) Let X have pdf 1
2
e−|x|, x ∈ R. Let Y = |X|3. Find the pdf of Y .

Solution: We will use a similar method to above.

FY (y) = P
(
|X3| ≤ y

)
= P

(
X ∈ [−y1/3, y1/3]

)
= P

(
X ≤ y1/3

)
− P

(
X < −y1/3

)
= P

(
X ≤ y1/3

)
− P

(
X ≤ −y1/3

)
, since P

(
X = −y1/3

)
= 0

= FX(y1/3)− FX(−y1/3)

=
1

2

(∫ y1/3

−∞
e−|x|dx−

∫ −y1/3
−∞

e−|x|dx
)

=
1

2

(∫ y1/3

0

e−xdx−
∫ 0

−y1/3
exdx

)
=

1

2

(
1− e−y1/3 + 1− e−y1/3

)
= 1− e−y1/3

Since this is also continuous, we can get the pdf by differentiating.

dFY (y)

dy
=

1

3
y−2/3e−y

1/3
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and so

fY (y) =

1
3
y−2/3e−y

1/3
, y ∈ (0,+∞)

0, o.w.

2. (Expectations 1: Linearity of Expectation) You learned in class that E[aX+ b] = aE[X]+ b.
The reason is because the integral is linear. Another very useful property of random variables
is that for any random variables X and Y , E[X +Y ] = E[X] +E[Y ]. This is true regardless
of their joint distribution!

Why is this true? Consider (X, Y ) with joint distribution fXY (x, y). Then

E[X + Y ] =

∫ ∫
(x+ y)fXY (x, y)dxdy

=

∫ ∫
xfXY (x, y)dxdy +

∫ ∫
yfXY (x, y)dxdy

using linearity of the integral

=

∫ ∫
xfXY (x, y)dydx+ +

∫ ∫
yfXY (x, y)dxdy

swapping the integration orders

=

∫
xfX(x)dx+

∫
yfY (y)dy

since integrating the joint density yields the marginal density

= E[X] + E[Y ]

The key step is the linearity of the integral and understanding that integrating out a joint
distribution leads to a marginal distribution. The same thing works for sums so we can use
this for discrete sums, too. It is easy to see how we could extend this to multiple random
variables X1, . . . , Xn with any relationship.

3. (Expectations 2: Law of Total Expectation) It is often useful to break down a random variable
into a partition of the sample space to compute its expectation. The formula is that for any
(finite or countable) {Ai}i partition of the sample space,

E[X] =
∑
i

E[X|Ai]P (Ai)

Here is an example: Suppose that Y has the following form: with probability p I draw a
normal random variable with mean µ. With probability 1 − p I then flip a coin. If the coin
is heads I draw from uniform [0, a]. If the coin is tails I set the variable equal to 0. What is
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E[Y ]?

The distribution is a nightmare but expectation is simple. There are essentially three events
A1 = draw a normal, A2 = draw a uniform random variable and A3 = set the variable to
1. The expectations in these cases can be calculated by my description (more on conditional
expectations later)

E[Y |A1] = µ,E[Y |A2] = a/2,E[Y |A3] = 1

Then the only thing left to do is to calculate the probabilities. It is not hard to show that
P (A1) = p, P (A2) = P (A3) = 1−p

2
. Then the expectation is

E[Y ] = µp+
1− p

2
(
a

2
+ 1)

4. (MGF Practice: Binomial and Poisson) There is a useful relationship Binomial and Poisson
variables. In general, binomial probabilities are hard to compute but Poisson probabilities
are much easier. A Binomial random variable can be approximated by a Poisson random
variable when n is large and np is small. The appropriate Poisson parameter is λ = np.

One can show this approximation using MGFs. Recall that MGF equivalence is “essentially”
the same as distribution equivalence (modulo some technicalities). Recall the MGF of the
binomial distribution with parameters n and p:

MX(t) = [p exp(t) + (1− p)]n

Let λ = np be the candidate Poisson parameter. Then we can write this as

MX(t) = [(λ/n) exp(t) + 1− (λ/n)]n =
[
1 +

λ

n
(exp(t)− 1)

]n
Now a classic result from analysis states that (1 + y

n
)n →n exp(y). So if we take n→∞ in

the MGF we get
lim
n
MX(t) = exp{λ(et − 1)}

which is in fact the MGF of the Poisson with parameter λ! It is a useful exercise to calculate
the Poisson MGF by hand.

This is a common use of an MGF - showing convergence in distribution because it charac-
terizes a distribution.

5. (Relationship between Bernoulli and Binomial) There is an important connection between
Bernoulli and Binnomial random variables. In particular, the following is true: IfX1, . . . , Xn
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are independent Bernoulli random variables with parameter p, then X1 + · · · + Xn is a
Binomial distribution with parameters (n, p).

First let’s show the distribution equivalence. We will use the MGF again. The Bernoulli
MGF is

MXi(t) = 1− p+ p exp(t)

Then letting Y =
∑

iXi we see that the MGF of Y is

E[exp{tY }] = E[exp{tX1 + · · · tXn}]

= E[exp{tX1} · · · exp{tXn}]

= E[exp{tX1}] · · ·E[exp{tXn}]

using independence

=
∏
i

MXi(t)

= (1− p+ p exp(t))n

which is the MGF fo the binomial. The only possibly unfamiliar thing we used here is that
the expectation of the product of two independent random variables is the product of their
expectations. We will look at this more generally and closely when we cover joint random
variables. Note also though that in our proof, we showed in general that the MGF of the sum
of independent random variables is the product of the MGFs.

The more important thing, in my opinion, is that this allows us to calculate the expectation
and variance easily. Recall linearity of expectation. There is also linearity of the variance
operator when the random variables are independent. Thus if Y is Binomial with parameters
(n, p) then

E[Y ] = E[X1 + · · ·+Xn] = np

and
Var(Y ) = Var(X1 + · · ·+Xn) = np(1− p)

and this is a useful way to memorize these properties.
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Section 3 - Multiple Random Variables, Inequalities, Conditional
Expectations

1. (Exponential Family Practice: Multinomial Distribution) Recall the definition of an expo-
nential family by pdfs

f(x|θ) = h(x)c(θ) exp{
K∑
i=1

ωi(θ)ti(x)}

First, we will practice defining this. Consider the multinomial distribution. This distribution
generalizes the binomial distribution to multiple outcomes. It describes the probability of
different outcomes occurring over many independent and identical trials. For example, can
model number of different types of role of a die. A common application in economics would
be to model the number of times consumers or firms make a certain purchase or strategic
decision assuming that decision errors or taste shocks are independent and identical across
time.

The multinomial distribution is defined by three parameters (n, k, p) where n is the number
of trials (like binomial) k is the number of categories, and p is a k-probability vector speci-
fying the probabilities of each trial so that

∑k
j=1 pj = 1. Let the outcomes be yj for category

j. The pdf is

P (y1 = x1, . . . , yk = xk) =
n!

x1! · · · xn!
px11 · · · pxnn

if
∑

j xj = n (0 otherwise). (Remember that 0! = 1.)

How to express in exponential form. It is not hard to see that we should separate out the
two parts. First letting h(x) = 1

x1!···xn!
and c(θ) = n! we are already close. Next note that

p
xj
j = exp{xj log pj} and so we can write the second part as∏

j

exp{xj log pj} = exp{
∑
j

xj log pj}

and so letting K = k and xj = tj(x) and ωj(θ) = log pj gives us the exponential parameter-
ization.

A good extra exercise: express this pdf as a function of Γ functions.

2. (Exponential Family Practice: Means) Here we will derive general properties of some func-
tions of means of exponential families and apply them. See Casella-Berger p. 112-113 for
more information.
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Suppose that θ is one dimensional. I claim that

E[
∑
i

ω′i(θ)ti(X)] = −c
′(θ)

c(θ)

How do we get this? Consider differentiating the density function with respect to θ. First
rewrite the density as

f(x|θ) = h(x) exp{c∗(θ) +
∑
i

ωi(θ)ti(x)}

This gives
∂f/∂θ = f(x|θ)

(
c∗
′
(θ) +

∑
i

ω′i(θ)ti(x)
)

Then note that
E[∂f/∂θ] = ∂E[f ]/∂θ = 0

if we can pass the derivative through the integral using Leibniz rule. Thus, integrating over
the equation gives∫ (

c∗
′
(θ) +

∑
i

ω′i(θ)ti(x)
)
f(x|θ)dx = E[c∗

′
(θ)] + E[

∑
i

ω′i(θ)ti(x)]

and then noting that c∗(θ) = log(c(θ)) so that the derivative is c′(θ)
c(θ)

gives us the result.

Why is the useful? An application: finding the mean and variance of Poisson random vari-
ables. Suppose X ∼ Pois(λ). Find the mean using the above formula. Note that the pdf
is

f(x|θ) =
λxe−λ

x!

and we can express in exponential form as

f(x|θ) =
1

x!
exp{x log(λ)− λ}

so that c(θ) = 1, ω1(θ) = log(λ), ω2(θ) = λ and t1(x) = x and t2(x) = −1. Then applying
the result and noting that c′(θ) = 0 we get that

0 = E[
1

λ
x− 1]

which gives us that
E[x] = λ.
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3. (Multiple Random Variable Practice) Suppose fXY (x, y) = K, x ∈ [0, 1] and y ∈ [0, x].

(a) Find K ∫ 1

0

∫ x

0

Kdydx = 1∫ 1

0

K · xdx = 1

x2

2
·K|10 = 1

K = 2

(b) Plot the support of the joint distribution: Triangle

(c) What’s E[Y |X]?

Next, first find fX and fY .

fX =

∫ x

0

2dy

= 2x, x ∈ [0, 1]

Verify:
∫ 1

0
2xdx = 1, ok.

fY |X = fXY /fX

= 2/2x

= 1/x, y ∈ [0, x]

E[Y |X] =

∫ x

0

y(1/x)dy

= y2/2x|x0
= x/2

(d) Recall that conditional expectations are random variables. What is the expectation of
E[Y |X]?

E[E[Y |X]] =

∫ 1

0

x

2
dx =

1

4
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(e) What’s E[X|Y ]?

fY =

∫ 1

y

2dx

= 2(1− y), 0 < y < 1

fX|Y = 2/2(1− y)

= 1/(1− y), x ∈ [y, 1]

E[X|Y ] =

∫ 1

y

x/(1− y)dx

=
1− y2

2(1− y)

=
(1 + y)(1− y)

2(1− y)

= (1 + y)/2

4. (Conditional Expectation Practice) Prove that if X and Y are independent then E[Y |X] =

E[Y ].

First recall conditional expectation definition:

E[Y |X] =

∫
yfY |X(y|x)dy

Recall what independence means in joint densities. It means that fXY (x, y) = fX(x)fY (y)

(if and only if!). Then can write conditional density as

fY |X(y|x) =
fXY (x, y)

fX(x)
= fY (y)

and so the conditional expectation is

E[Y |X] =

∫
yfY (y)dy = E[Y ].
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Section 4 - Order Statistics, Method of Moments and MLE

1. (Uniform Order Statistics Distribution) Recall the formula for the CDF of order statistic k
from class is:

FX(k)
(x) =

n∑
j=k

(
n

j

)
F (x)j(1− F (x))n−j

where we use the binomial formula basically to compute the overall probabilities of the n
variables falling in this order.

What does this look like for a (standard) uniform distribution? For x ∈ [0, 1]: F (x) = x and
so

FX(k)
(x) =

n∑
j=k

(
n

j

)
xj(1− x)n−j

Then we can find the pdf by differentiating:

fX(k)
(x) =

n∑
j=k

n!

j!(n− j)!
(jxj−1(1− x)n−j + (n− j)xj(1− x)n−j−1)

= n

(
n− 1

k − 1

)
xk−1(1− x)n−k − n

(
n− 1

k

)
xk(1− x)n−k−1

+ n

(
n− 1

k

)
xk(1− x)n−k−1 − n

(
n− 1

k + 1

)
xk+1(1− x)n−k−2

+ · · · − n
(
n− 1

n− 1

)
xn−1 + nxn−1 − 0

= n

(
n− 1

k − 1

)
xk−1(1− x)n−k

by deleting all the adjacent terms after the first term and thus we can use this telescoping
sum term to derive the pdf.

Does this look familiar? There is a distribution called the Beta Distribution which has pa-
rameters (α, β) and has pdf

f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

recalling that Γ(α) = (α− 1)! when α is an integer. Then note that

n

(
n− 1

k − 1

)
=

n!

(k − 1)!(n− k)!
=

Γ(k + n− k + 1)

Γ(k)Γ(n− k + 1)
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and then we see that
X(k) ∼ Beta(k, n− k + 1)

Thus, if we know some properties of the Beta distribution we can use these to understand
properties of uniform order statistics. If X ∼ Beta(α, β) then E[X] = α

α+β
. Let’s use this to

compute the expectation of the maximum and minimum of N iid standard uniform random
variables. They are order stats X(1) and X(N) respectively. Then X(1) ∼ Beta(1, N) and
X(N) ∼ Beta(N, 1) and so E[X(1)] = 1

N+1
and E[X(N)] = N

N+1
.

2. (MoM Example: Uniform with unknown endpoints) The MoM estimator essentially says
give me a number of parameters, give me some moments, and let me solve for the parameters
given the moments. Then we can use the analogy principle to form the estimator.

Consider the following example: we have a random sample from a variable distributed as
uniform U [a, b] where both a and b are unknown. How do we get the MoM estimator? As
suggested by the idea, we should compute some moments. Let’s compute the first and second
moment of the random variable. First note that if X ∼ U [a, b] then

E[X] =
a+ b

2

and

E[X2] =

∫ b

a

x2

b− a
dx =

1

3

b3 − a3

b− a
=
a2 + ba+ b2

3

Thus we have two moments. Using the analogy principle we put in the sample analogues of
these to get a system

X̄ =
a+ b

2

X̄2 =
a2 + ba+ b2

3

This has solution

â = X̄ −
√
X̄2 + 2X̄ − 3X̄2

b̂ = X̄ +

√
X̄2 + 2X̄ − 3X̄2

which gives us a MoM estimator.

While using the first K moments for K parameters is generally the standard “MoM estima-
tor” your estimator does not have to be based on standard moments. You’ll more about this
when you explore simulated method of moments and GMM.
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3. (MLE Example 1: Normal unknown mean, known variance) MLEs are usually straightfor-
ward: they are maximization problems and so our calculus tools will usually come in handy.
Suppose that we have a random sample of size N of normal variables with unknown mean
µ and known variance σ2. Then the PDF for one draw is

f(x) =
1√

2πσ2
exp{−(x− µ)2

2σ2
}

So we can derive the likelihood as the product of the N draws as

f(X1, . . . , XN) =
∏
i

1√
2πσ2

exp{−(Xi − µ)2

2σ2
} =

1

(2πσ2)N/2
exp{−

N∑
i=1

(Xi − µ)2

2σ2
}

which is also the likelihood function of the parameter µ given the data:

L(µ) =
1

(2πσ2)N/2
exp{−

N∑
i=1

(Xi − µ)2

2σ2
}

In almost all MLE situations it is easier to work with the log-likelihood. In this case the
log-likelihood is

l(µ) = −N
2

log(2πσ2)−
N∑
i=1

(Xi − µ)2

2σ2

To maximize this function set the derivative with respect to µ to 0:

1

σ2

∑
i

(Xi − µ) = 0

and this gives

µ =
1

N

∑
i

Xi = X̄

and so the proposed MLE is µ̂MLE = X̄ . How do we know? We can check the SOC: the
second derivative of l is

−N
σ2

< 0

as long as σ > 0. Thus the function is strictly concave so the FOC is sufficient since the
function is smooth over the real numbers.

How would this change with σ2 unknown? To maximize the log-likelihood we would also
need to maximize over σ2 and so we would need that partial as well and solve for the max-
imizer using multivariate methods. This is a good exercise to practice the important opti-
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mization techniques in statistics.

4. (MLE Example 2: Uniform with 1 unknown endpoint) Consider a random sample of size N
from a uniform distribution U [0, θ] where θ is unknown. Let’s find the MLE for θ.

First the pdf is

f(Xi) =
1

θ
1{Xi ∈ [0, θ]}.

Then the likelihood is
L(θ) =

∏
i

1

θ
1{Xi ∈ [0, θ]}

We will not go to log-likelihood now. Ignore the indicators and suppose we were a bit more
sloppy. Then we would write this as

L(θ) =
1

θN

Then it seems to maximize this we should set θ as small as possible to maximize this function
- i.e. θ → 0.

This argument is wrong because we have the indicators. In particular, suppose that we have
X1 = 1, X2 = 2. Then the log likelihood for choosing θ = ε very small gives

L(ε) = 0

since both X1, X2 > ε. Instead suppose we choose θ = 1. Then the first indicator is 1 but
the second is 0 so

L(1) = (1)(0) = 0

If we choose θ = 2 then we get that

L(2) = (
1

2
)2 = 1/4

using this we should be able to compute the MLE generalizing to N data points in general.

Section 5 - Evaluating Estimators

1. (MSE Example) Recall that MSE is defined as Variance + Bias2 where these things depend
on the true parameter value (i.e. are taken with respect to the true parameter value). It is a
function of the true parameter.
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Consider the case where we have a random sample from a normal distribution with param-
eters (µ, σ2) where both µ and σ2 are unknown. Focus on estimating σ2 for now. There are
two candidate estimators that we are considering: one is the MLE

σ̂2
MLE =

1

n

∑
i

(Xi − X̄)2

and the other is the “biased-corrected” MLE

S2 =
1

n− 1

∑
i

(Xi − X̄)2

Let’s compare these estimators by the MSE criteria. As motivated above, we have that

E[σ̂2
MLE] =

n− 1

n
σ2

and
E[S2] = σ2

Now we compute the variances. To do this computation note that E[X̄] = µ. As well note
that ∑

i(Xi − X̄)2

σ2
∼ χ2(n− 1)

a chi-squared r.v. with n − 1 degrees of freedom. The variance of a χ2 distribution as a
function of the d.o.f. is 2n so the variance is 2(n− 1). From this we can easily derive that

Var(σ̂2
MLE) =

2(n− 1)σ4

n2

and
Var(S2) =

2σ4

n− 1

using properties of the variance operator. Note that all these expectations and variances are
functions of the true parameter σ2.

Then the MSEs are repsectively

MSE(σ̂2
MLE) = (E[σ̂2

MLE]− σ2)2 + Var(σ̂2
MLE)

=
σ4

n2
+

2(n− 1)σ4

n2

=
(2n− 1)σ4

n2
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and

MSE(S2) = (E[S2]− σ2)2 + Var(S2)

= 0 +
2σ4

n− 1

=
2σ4

n− 1

Now note that
2n− 1

n2
<

2n

(n− 1)n
<

2

n− 1

and so the MSE of the MLE is strictly smaller for all true values of the parameters.

2. (Sufficient Statistic and Rao-Blackwellization Example) Recall the definition of a sufficient
statistic: it is a statistic T (X) s.t.

f(X|θ, T ) = f(X|T )

It is “sufficient” because once we include it, there is not extra information about θ contained
in the distribution.

It is useful because we can improve unbiased estimators using the Rao-Blackwell theorem by
conditioning on the sufficient statistic and improving it. In particular, Rao-Blackwellization
(1) does not change the mean (it was unbiased so that is good) and (2) lowers the variance.
Both of these make it at least as good an estimator in the MSE sense.

Here is an example: Let X1, . . . , Xn ∼ Pois(λ) where we want to estimate λ. First, I claim
that

∑
iXi is a sufficient statistic for λ. This can be shown with the exponential family

results we learned in class but I also want to show it using the Factorization Theorem. In
general, I find the useful ways to prove sufficient are through Theorems 6.2.2 and 6.2.6
(Factorization Theorem) in Casella-Berger. They basically say the same thing: we can split
the density appropriately. In this case, the joint pdf of the draws is

∏
i

f(Xi|λ) =
∏
i

λXie−λ

Xi!
= λ

∑
iXie−nλ

1∏
iXi!

= g(
∑
i

Xi|λ)h(X1, . . . , Xn)

and so by factorization the sum of the values this is a sufficient statistic.

Next, I show an example of Rao-Blackwellization. Consider an unbiased estimate, λ̂1 = X1

the first draw. This is unbiased because E[X1] = λ. Now we will RB this.
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To do this, we need to take the expectation X1 with respect to the sum to get the estimator:

λ̂RB = E[X1|
∑
i

Xi = t]

To compute this consider
E[
∑
i

Xi|
∑
i

Xi = t] = t

and expanding the left side is ∑
i

E[Xi|
∑
i

Xi = t] = t

and then using the fact that each term inside is identically distributed thus must each be the
same and so we get that E[Xi|

∑
iXi = t] = t/n and so

λ̂RB = X̄

3. (Complete Statistic Example) A statistic is complete if for any (measurable) function g, if
Eθ[g(T )] = 0 for all θ ∈ Θ then Pθ(g(T ) = 0) = 1 for all θ ∈ Θ.

In the exponential family

f(x|θ) = h(x)c(θ) exp{
K∑
i=1

ωi(θ)ti(x)}

we have that T =
(∑n

i=1 t1(Xi), . . . ,
∑n

i=1 tK(Xi)
)

is sufficient for θ and is complete if
{(ω1(θ), . . . , ωK(θ)) : θ ∈ Θ)} contains an open set in RK .

I will now show that this open set property is important. Consider a normal distribution with
parameters (µ, σ2). In this case, we have that t1(x) = x and t2(x) = x2. If we allow

Θ0 = {(µ, σ2) : µ ∈ R, σ2 > 0}

then Θ0 contains an open set in R2; for example the open unit circle centered at (10, 10).

However, if we restrict the parameter space we may not get this open set condition. For
example if we set

Θ1 = {(µ, σ2) : µ2 = σ2, µ > 0}
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this does not have an open set in R2 (it is a parabola). Now consider

g(T ) = 2(
∑
i

Xi)
2 − (n+ 1)

∑
i

X2
i

This is a function of the sufficient statistics. Note that E[X2
i ] = 2µ2. Also note that

E[g(T )] = 2E[(
∑
i

Xi)
2]− (n+ 1)E[

∑
i

X2
i ]

= 2
(∑

i

∑
j

E[XiXj]
)
− 2(n+ 1)nµ2

= 2
(

2nµ2 + (n2 − n)µ2)− 2(n+ 1)nµ2

by counting terms

= 0

Now we just need for g(T ) to not always be 0. This is true: g(T ) is not generically 0. For
example take an interval around 1 for each Xi for i = 1, . . . , n. This has positive probability.
For Xi = 1 we get

g(T ) = 2n2 − (n+ 1)n = n2 − n 6= 0

4. (CRLB Uniform Example) Suppose that X1, . . . , Xn ∼ U [0, θ]. Then we learned in class
that 1+n

n
X(n) is the UMVU. What is its variance? It is clearly equal to

Var(
1 + n

n
X(n)) =

(n+ 1)2

n2
Var(X(n))

and the computation for finding Var(X(n)) simply uses the form of the density: f(x|θ) =

nxn−1/θn. Then

E[X(n)] =

∫ θ

0

nxn/θndx =
n

n+ 1
θ

and

E[X2
(n)] =

∫ θ

0

nxn+1/θndx =
n

n+ 2
θ2

and so
Var(X(n)) =

n

(n+ 1)2(n+ 2)
θ2

and so
Var(

1 + n

n
X(n)) =

θ2

n(n+ 2)
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What is the CRLB? For unbiased estimators it is

Var(θ̂) ≥ 1

nE[( ∂
∂θ

log f(Xi|θ))2]

Here
log f(Xi|θ) = − log(θ)1{Xi ∈ [0, θ]}

and so if Xi < θ this is the derivative is

1/θ

so that the CRLB is
θ2/n

But
θ2

n(n+ 2)
≤ θ2

n

so clearly it does not apply. What goes wrong? The condition about differentiating under the
integral. Because the support of the distribution depends on the parameter, we are unable to
differentiate under the integral.

Section 6 - Midterm Review and Hypothesis Testing Introduc-
tion

1. (Midterm Review) Any questions/concerns on the midterm? Let’s go over the last question
because it is a bit challenging.

2. (Hypothesis Testing Power: Binomial Example) Suppose that our null is H0 : θ ∈ Θ0 which
makes the alternativeH1 : θ ∈ Θ1 where Θ1 = Θ\Θ0. Our testing procedures tells us which
hypothesis to choose. In particular as a function of the data X , we specify a region R s.t. we
reject H0 if X ∈ R.

Then we can draw the table for decision making in hypothesis testing.

Mathematically, type 1 error is Pθ(X ∈ R) if θ ∈ Θ0 and type 2 error is 1 − Pθ(X ∈ R) if
θ ∈ Θ1.

Then we define a test’s power as a function of θ: β(θ) = Pθ(X ∈ R).

What is the ideal power function? 1 when θ ∈ Θ1 and 0 when θ ∈ Θ0. So qualitatively, want
the power functions close to 1 when θ ∈ Θ1 and close to 0 when θ ∈ Θ0.
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For example, suppose that X ∼ Bin(5, θ) and we want to test whether θ ≤ 0.5. Then X is a
vector of length 5 of 0’s and 1’s.

We will consider a few different tests. First suppose that R = {0, 1}5. Then I always reject
the null hypothesis. Thus

β0(θ) = 1

and this doesn’t really satisfy the good properties of power intuition. It also seems like a bad
way to test.

Now consider a test in which we reject if all the outcomes are successes. Then

β1(θ) = θ5

which does satisfy some of the requirements - it is close to 0 when θ ≤ 1/2 and closer to 1
when θ > 1/2. Note that the Type 1 error probability is extremely low (1/2)5 < 0.05 but
the Type 2 error probability is still quite high: at θ = 3/4 the probability of a Type 2 error is
1− (3/4)5 > 0.75 which is very high.

Finally consider rejecting if X ∈ {3, 4, 5}. Then the power function is

β2(θ) =

(
5

3

)
θ3(1− θ)2 +

(
5

4

)
θ4(1− θ) + θ5

This will have a smaller Type 2 error but the Type 1 error will be much higher. Thus there is
a balance that we want to strike.

3. (Hypothesis Testing Power: Normal Power Calculation Example) The power will typically
depend on the sample size n and so experimenters and researchers can select n to have
appropriate power properties.

Suppose that X1, . . . , Xn ∼ N(µ, σ2) with σ2 known and we want to test H0 : θ ≤ θ0. A
relatively standard test (one that will be derived in class) will be to reject H0 if

X̄ − θ0

σ/
√
n
> c
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Thus we have that the power function is

β(θ) = Pθ

(
X̄ − θ0

σ/
√
n
> c

)

= Pθ

(
X̄ − θ
σ/
√
n
> c+

θ0 − θ
σ/
√
n

)

= Pθ

(
Z > c+

θ0 − θ
σ/
√
n

)

where Z is a standard normal random variable.

Suppose that we want to have a maximum Type 1 Error probability of 0.1 and we would like
the Type 2 error probability to be 0.2 if θ ≥ θ0 + σ. Since β(θ) is increasing this will be true
if

β(θ0) = 0.1 and β(θ0 + σ) = 0.8

Now by choosing c = 1.28 we get P (Z > 1.28) = 0.1 independent of n. So the binding
constraint for n is

β(θ0 + σ) = P
(
Z > 1.28−

√
n
)

= 0.8

and using normal cdf computation tricks this shows that n ≥ 5 must be chosen.

Section 7 - Hypothesis Testing

1. (Optimal Tests) Recall last time we talked about the power function β(θ) = prob reject(θ).
We say that a test has level α if β(θ) ≤ α, ∀θ ∈ Θ0. The size of a test is supθ∈Θ0

β(θ). The
Neyman approach to picking tests is to fix a class of tests with level α and the minimize the
probability of type 2 errors (for all θ ∈ Θ1; so minimize the max type 2 error). In particular,
we pick the UMP once restricting the type 1 error in a class: a test in class C is UMP if
β(θ) ≥ β∗(θ) for all θ ∈ Θ1 for every β∗ corresponding to a test in C.

How do we find a UMP? In simple null and alternative cases it is not very difficult using the
Neyman-Pearson Lemma: the test that rejects iff f(X|θ1) > kf(X|θ0) is UMP level α test
where α = β(θ0).

Unfortunately, UMP is not that useful of a concept because in many cases it does not exist.
In the simple cases (both null and alternative are simple hypotheses) we went over in class it
does, but if the alternative hypothesis has the form θ 6= θ0 one can show that the UMP does
not exist within a class of level α tests. Thus we focus on more practical forms of tests.
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To see the non-existence of a UMP in a case that we care about, look at Example 8.3.19 in
Casella-Berger. Because of these technical problems, in the likelihood case, we focus on
some other tests. In class we saw that when we have simple hypotheses the LRT yields the
UMP.

2. (Trinity of Test Intro)

This figure is a great way to understand these tests. Consider testing H0 : θ = θ0.

Recall the definitions from class

• LR: TLR = 2(l(θML) − l(θ0). Figure shows that this compares the value of the log-
likelihood using the fact that MLE maximizes this.

• LM/Score test: TLM = l′(θ0)2

−l′′(θ0)
. Figure shows that this compares derivative of log-

likelihood at proposed value. Note: no estimation needed!

• Wald: TW = (θML−θ0)2

(−l′′(θML))−1 . This basically looks at distance standardized by variance of
ML (recognize this formula?). Figure shows that this is comparing ML estimator and
true value directly.

Importantly showed in class that these tests are asymptotically equivalent using Taylor ex-
pansions. Their asymptotic distributions are all χ2. We will talk more about asymptotic
distributions in the coming weeks.

If the results in finite samples differ, it may be a warning size that sample size is too small to
apply asymptotic approximations or model is misspecified.

3. (Trinity of Test Examples)
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Suppose that we observe N = 20 trials of Bernoulli draws with parameter p and we observe
x = 10 successes. Our null is H0 : p = 0.29. Let’s compute the test statistics for each test
and compare.

[might want to fudge around numbers]

To do this, we first need the likelihood function. In this case it will be

L(p|X) = px(1− p)N−x

where x =
∑

iXi the number of observed succeses. Our tests will use the MLE so we derive
it now. The log-likelihood is

l(p|X) = x log(p) + (N − x) log(1− p)

and maximizing this it is not hard to see that p̂ML = x
N

= 0.5.

KnowingN = 20 and using a confidence level of 95% and using the chi-squared distribution
with 1 degree of freedom, we get that the critical value we will reject at in general will be
3.84.

(a) (LRT) The test stat is 2(l(0.5)−l(0.29)) = 2(10 log(0.5)+10 log(0.5)−10 log(0.29)−
10 log(0.71)) = 3.88. So we reject.

(b) (LMT) To find the test stat we need to find the derivatives. Here the first derivative is

l′(p|X) =
x

p
− N − x

1− p

and the second derivative is

l′′(p|X) = − x
p2
− N − x

(1− p)2

Then the test stat is
( 10

0.29
− 10

0.71
)2

10
0.292

+ 10
0.712

= 3.0

so we do not reject.

(c) (Wald) The test stat is
0.212

( 10
0.52

+ 10
0.52

)−1
= 3.528

so also do not reject.
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Section 8 - Hypothesis Testing and Convergence Concepts

1. (UMP, Karlin-Rubin, Unbiased Tests) Recall last time we talked about how finding UMP
tests are challenging in general unless hypotheses are simple. The Neyman-Pearson lemma
helps up in simple cases.

Similar to the NP Lemma, the Karlin-Rubin Theorem is helpful for certain kinds of tests.
The theorem states:

Theorem: When testing H0 : θ ≤ θ0 vs H1 : θ > θ0, if we have a sufficient statistic T for θ
and the family of pdfs/pmfs {g(t|θ) : θ ∈ Θ} of T has a monotone likelihood ratio then the
test T > t0 can be made into a UMP level α test.

Clearly we need to know what MLR is: g(t|θ2)/g(t|θ1) monotone for every θ2 > θ1. A good
exercise: when does an exponential family distribution have an MLR? Remember, that g is
the pdf of the sufficient statistic!

How about for two sided testing H0 : θ = θ0 vs. H1 : θ 6= θ0? As pointed out before, in
general UMP tests do not exist in the full class of tests. However, they do often exist in the
class of unbiased tests where unbiasedness is defined as supθ∈Θ0

β(θ) ≤ infθ∈Θ1β(θ). We
won’t explore this theory too much but it’s useful to know. Many of the tests that we use in
economics and similar fields are UMP in the class of unbiased tests.

2. (Interval Estimation) We can use the tools of hypothesis testing, particularly how we choose
to reject hypotheses, as a way to form interval estimators for parameters θ. An interval
estimator is [L(X), U(X)] which is a “random interval” (the bounds defining the region
and shape are random variables). The most important concept is the coverage probability
which is the probability that the interval covers the parameter. NOT the probability that the
true parameter falls in the interval, because θ is just a scalar number.

How do we form interval estimators? The general rule is test inversion which means we
essentially “invert” optimal tests or tests that have good properties. We then can match the
size of the test to the complementary coverage probability. Thus size α tests lead to 1 − α
coverage probability interval estimators. For more formal justification see CB Theorem
9.2.2.

Let’s do an example. Suppose that X1, . . . , Xn is a random sample from a normal distribu-
tion with θ = µ and σ2 is known. We want to form a (1− α) confidence interval for the test
H0 : θ = θ0 vs. H1 : θ 6= θ0. Among unbiased tests, the UMP level α test is to reject the
null if

|X̄ − θ0| > zα
σ√
n
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Then we can write the “acceptance region” as

{X : |X̄ − θ0| ≤ zα
σ√
n
}

and simplifying this out becomes

{X : θ0 − zα
σ√
n
≤ X̄ ≤ θ0 +

σ√
n
}

To invert, we express in terms of θ:

{θ0 ∈ Θ : θ0 − zα
σ√
n
≤ X̄ ≤ θ0 +

σ√
n
}

which can be written as

{θ0 ∈ Θ : X̄ − zα
σ√
n
≤ θ0 ≤ X̄ +

σ√
n
}

and so L(X) = X̄ − zα σ√
n

and U(X) = X̄ + zα
σ√
n

summarize our interval estimator.

3. (Convergence Concepts) We moved onto asymptotic concepts this week which are very im-
portant in econometrics. The main concepts we learned about were

• Convergence in Probability: limP (|Xn −X| ≥ ε) = 0 for all ε > 0.

• Almost Sure Convergence: P (limn |Xn −X| > ε) = 0 for all ε > 0.

• Convergence in Distribution: limn FXn(x) = FX(x) (at all cty points)

Adding some more for completeness:

• Convergence in r-th mean (we did quadratic mean in class): limn E[(Xn −X)r] = 0.

What is their relationship?

Main tools: Law of Large Numbers (weak for cvg in prob; strong for as cvg); Central
Limit Theorem (cvg in dist)
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Figure 1: Source - Statistics Stack Exchange (Link)

4. (Cvg in Probability vs. Almost Sure Convergence) We did an example in class on the dif-
ference between these two concepts but I want to go over one more conceptual clarification
because the equations do not provide much intuition.

Consider a simple example Xj ∈ {−1, 1} with equal probability and we look at X̄(n) =

Sn/n which should converge to 0.

WLLN: Pick some ε > 0 small. The WLLN says that we can make the number of paths
across samples of X̄(n) in the range (−ε, ε) arbitrarily close to 1 by picking n large enough.
It does not guarantee though that there will not be any paths that fall outside of (−ε, ε) for n
large enough.

SLLN: Pick some ε > 0 small. The SLLN says that there exists some N s.t. for all n > N

X̄(n) ∈ (−ε, ε) with probability 1. Thus if the SLLN holds here, the average will never fail
for large enough n.

See Figure for more details.

5. (Bias vs. Consistency) Consistency seems similar to bias but they are different. One is about
finite samples and one is about asymptotics.

For example, we learned that in the U [0, θ] case the MLE is X(n) the max of the sample,
which is biased but is consistent. The reason is consistent is because under general conditions
(which likely covered next quarter) the MLE is consistent.

Suppose that X1, . . . , Xn ∼ N(µ, 1). Another example of a biased but consistent estimator
is n−1

n
X̄ .
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What about unbiased but not consistent? Consider in the same case the estimator of µ, X1.
Clearly not consistent since it has a positive probability of being away from the true value
for all large n.

There is a way to understand the relationship between the two:

Result: An estimator will be consistent if it is asymptotically unbiased and its variance
converges to 0.

Proof. We will use Chebychev. Note that

P (|Xn − θ| ≥ ε) = P
(
(Xn − θ)2 ≥ ε2

)
≤ E[(Xn − θ)2]

ε2

by Chebychev. Then expanding out the numerator yields

Bias2(θ, n) + Var(θ, n)

ε2

since this is the classic MSE calcuation. And so if both terms go to 0 then we get converge
in probability.

Section 9 - Asymptotic Distributions and Bayesian Estimation

1. (Asymptotic MLE Distribution Example) Consider X1, . . . , Xn ∼ Ber(p). Then the MLE is
p̂ = X̄ . Then by direct calculation

Var(p̂) =
p(1− p)

n

Suppose we wanted to find the asymptotic distribution of p̂. There are two ways to do this.
One easy way to do it is to look at

√
n(p̂− E[p̂])→d N(0, nVar(p̂)) = N(0, p(1− p))

where E[p̂] = p. Thus, we have an asymptotic distribution.

The other way is to use the MLE property. We know that the variance is I(p)−1 where I(p)

is the Fisher information. What is the Fisher Information?

I(p) = E[−l′′(p)]
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Here, the log-likelihood for one data point is

l(p) = Xi log(p) + (1−Xi) log(1− p)

with
l′′(p) = −Xi

p2
− 1−Xi

(1− p)2

and then
E[−l′′(p)] =

p

p2
+

1− p
(1− p)2

=
1

p
+

1

1− p
=

1

p(1− p)

and so I(p)−1 = p(1− p) and thus by the MLE theorem

√
n(p̂− p)→d N(0, p(1− p))

Note that in general, when we reach this variance, by the CRLB, this is asymptotically ef-

ficient. So this is quite a good asymptotic estimator! This makes MLE quite attractive,
especially in empirical analysis where we use and refer to asymptotic properties of our esti-
mators.

2. (Asymptotic Hypothesis Testing Example) Recall the trinity of tests. In all cases, these tests
will be the same. Theorem 10.3.3 in CB shows that the LRT statistic converges to a Chi-

squared distribution with degrees of freedom equal to the number of free parameters in the
null hypothesis. Similarly, the classic Wald and LM tests will have Chi-squared distributions
as well. We went over some examples in lecture in class.

What about other asymptotic tests based on asymptotic normal distributions? Clearly, for us
to use asymptotic normal distributions, to compare to a non-parameter dependent value, we
can use the standard normal distribution N(0, 1).

A common type of test is a Wald test, related to the Wald in the trinity of tests. This test has
the form

Zn =
Wn − θ0

Sn

where Wn is an estimator of θ0 and Sn estimates the asymptotic variance of Wn. If this is the
case and we can apply a CLT to Wn, and Sn converges in probability to the variance, using
Slutsky’s theorem we get that Zn will be a standard normal variable.

Consider testing H0 : p ≤ p0. Consider the MLE p̂. Then the standard deviation of this
estimator is σn =

√
p(1− p)/n. We cannot form an estimator based on p, the true value, so

we will use Sn =
√
p̂(1− p̂)/n. Then it can be shown that σn/Sn →p 1. Thus, by utilizing
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CLT and Slutsky’s theorem we get that

W =
p̂− p√

p̂(1− p̂)/n
→ N(0, 1)

Then we form and reject the null by replacing p with p0 and reject W if W > zα where zα is
the α quantile of the normal distribution.

3. (Bayesian Example) Bayesian estimation follows Bayes’ Rule: for events A and B

P (A|B) =
P (A ∩B)

P (B)
=

P (B|A)P (A)

P (B)

The density analogy is

fX|Y =
fXY
fY

=
fY |XfX
fY

This gives us the posterior density, the main thing we use for estimation.

Given a fY |X and fX we can find the posterior distribution using these formulas. In par-
ticular, the methodology usually recognizes that fY is a constant and instead look at the
numerator to find the kernel of the distribution. Another way to do Bayesian modeling in
a convenient way is to use conjugate priors: families in which the posterior is in the same
family as the prior.

Let’s do an example: Gamma prior and Exponential likelihood. Suppose that θ ∼ Gamma(α, β)

and Xi|θ ∼ Exp(θ) i.i.d for i = 1, . . . , n.

Consider one observation. Then the kernel looks like

f(θ) ∝ fXi|θ(Xi)fθ(θ) = θ exp{−θXi}
βα

Γ(α)
θα−1 exp{−βθ}

∝ θα+1−1 exp{−θ(Xi + β)}

which is also a Gamma distribution! If we move to n observations we get

f(θ) ∝
∏
i

fXi|θ(Xi)fθ(θ) =
∏
i

(θ exp{−θXi})
βα

Γ(α)
θα−1 exp{−βθ}

θα+N−1 exp{−θ(
∑
i

Xi + β)}

which is a Gamma(α +N, β +
∑

iXi).

4. (Numerical Methods for Bayesian Analysis) What do we do if we don’t have conjugate
priors? How can we draw from the posterior? There are some neat techniques developed to
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deal with these cases. I will go over one: Gibbs sampling.

The idea of Gibbs Sampling is to build off of ideas from chains (Markov-Chain-Monte-
Carlo Methods). The idea behind chains is to find θk+1 ∼ f(θ|θk, data) in such a way that if
θk ∼ p(θ|data) then θk+1 ∼ p(θ|data). Then we need an initializer θ0 ∼ p(θ|data). In many
cases, though, wherever we start, as k → ∞, we will get convergence. So after some large
K we will be drawing from the the posterior.

For Gibbs Sampling, instead of directly sampling the full vector, we split up the the vector of
parameters θ into separate parts θ = (θ1, . . . , θM) and sample from conditional distributions
for θm given −m.

For example suppose that we have a draw of N 0-1 data points. Let’s treat N as uncertain
following a Poisson distribution with parameter λ. The number of successes is Binomial
with parameters N and parameter θ. Finally, the prior of θ is Beta with parameters α and β.

The joint distribution of (θ,X,N) has a really complicated form. No analytic-closed form.
So how could we draw from the posterior? To do this we need to find the conditional distri-
butions. Here

f(X|θ,N) ∝
(
N

X

)
θX(1− θ)N−X ∝ Bin(N, θ)

f(θ|X,N) ∝ θα+X−1(1− θ)β+N−X−1 ∝ Beta(α +X, β +N −X)

f(N |θ,X) ∝
(
N

X

)
λN

N !
(1− θ)N−X ∝ (λ(1− θ))N−X

(N −X)!
∝ Poi(λ(1− θ)) for n = x, x+ 1, . . .

How to do the sampling? Pick (X(0), θ(0), N (0)). Then for k = 1, 2, . . . sample

X(k) ∼ Bin(N (k−1), θ(k−1))

θ(k) ∼ Beta(α +X(k), β +N (k−1) −X(k))

N (k) = X(k) + z, z ∼ Poi(λ(1− θ(k)))

and repeat until convergence.

Why does this work? There is some deep theory behind it using markov chains that I won’t
go into. For more information, take Guido’s metrics class or Bayesian statistics courses.

Section 10 - OLS

1. (Linear Algebra Review) This week we did OLS. To fully understand the derivations behind
OLS, linear algebra is necessary. Let’s review some important and basic concepts for linear
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algebra.

• (Transpose of Multiplication) An important operator is transpose. If A and B are ma-
trices then (AB)′ = B′A′.

• (Inverse of Multiplication) An important operator is inverse. If A and B are invertible
matrices then (AB)−1 = B−1A−1

• (Definitiveness) The quadratic form of a matrix is x′Ax. Based on the sign of this
object for all non-zero x of the appropriate dimensions, we say that A is [something]-
definite where something could be “positive”, “negative” etc. This idea is useful in
Gauss-Markov theorem statement.

• (Matrix Calculus and Algebra):

∂Ax

∂x
= A,

∂x′Ax

∂x
= (A+ A′)x,

∂x′Ax

∂A
= xx′

these are useful for solving for the OLS solution and other related problems.

• (Idempotent Matrices) A (square) matrix A is idempotent if AA = A. Consider the
projection matrix and residual makers

PX = X(X ′X)−1X ′

MX = I − PX

How to check this? First note that these matrices are symmetric.

PXPX = X(X ′X)−1X ′X(X ′X)−1X ′

= X(X ′X)−1IX ′

= PX

and similar for MX .

• (OLS Coefficient) In general we can express the OLS coefficient in a model of the form

y = Xβ + ε

as β̂OLS = (X ′X)−1X ′y.

2. (Helpful Properties of Matrix Notation for OLS Objects) There very important objects in
OLS are y, the dependent variable observations, ŷ, the predicted values based on the linear
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model, and e the residuals. Note that

e = y −Xβ̂

= y −X(X ′X)−1X ′y

= (I −X(X ′X)−1X ′)y

= MXy

and

ŷ = Xβ̂

= yX(X ′X)−1X ′y

= PXy

and so
y = ŷ + e = PXy +MXy

so that the observed data consist of the projection of y onto the column space of X plus the
residual. This gives a useful way to represent and compare these three objects.

3. (t-tests: An Example of Differentiating Normal and more General Models) One common test
run on OLS model coefficients is H0 : βj = 0. These are usually called t-tests. Consider the
normal linear model. In this case, β̂ is the MLE and has a multivariate normal distribution
in finite samples and so the t-stat

tj = β̂j/s.e.(β̂j)

actually does have an exact t distribution.

However, in general we do not like the strong normal linear model assumptions. Instead, we
prefer the more general exogeneity assumptions. In particular, under the assumptions that
ε is not necessarily normal we have that β̂j is not exactly normal and so tj is not exactly t.
However, as shown, the asymptotic distribution of tj is now a standard normal distribution,
and so this is what we base our tests on.

4. (OLS as MoM) We motivated OLS as a maximum likelihood estimator of a normal linear
model and also as a linear statistical optimization problem. There is another way to motivate
using some of the methods we have learned - as a method of moments estimator. To do this
consider we need a moment. Recall that E[ε|X] = 0 implies that E[X ′ε] = 0 (or that their
covariance is 0 if we normalize E[ε] = 0). Then the method of moments estimator based on
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this replacing ε = y −Xβ can be written as

E[X ′(y −Xβ)] = 0

and expanding this gives us
E[X ′y]− E[X ′X]β = 0

since β is a constant. Thus solving for β we have

β = (E[X ′X])−1E[X ′y]

and the sample analogue to this is

β̂mom = (
1

n
X ′X)−1 1

n
X ′y = β̂ols

and thus, this is a method of moments estimator!

This solidifies the intuition that the important assumptions in OLS for recovering the param-
eters really only have to do with exogeneity conditions, not distributional assumptions, since
the method of moments estimator is completely distribution free. Also, it shows that strict
exogeneity is not strictly necessary, and that E[X ′ε] = 0 is sufficient in this linear model.
You will see more on this next quarter.

5. (Review for Final) Leave extra time for questions on final.
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